An oracle inequality for quasi-Bayesian nonnegative matrix factorization
نویسندگان
چکیده
منابع مشابه
An Oracle Inequality for Quasi-Bayesian Non-Negative Matrix Factorization
The aim of this paper is to provide some theoretical understanding of Bayesian non-negative matrix factorization methods. We derive an oracle inequality for a quasi-Bayesian estimator. This result holds for a very general class of prior distributions and shows how the prior affects the rate of convergence. We illustrate our theoretical results with a short numerical study along with a discussio...
متن کاملBayesian Group Nonnegative Matrix Factorization for EEG Analysis
We propose a generative model of a group EEG analysis, based on appropriate kernel assumptions on EEG data. We derive the variational inference update rule using various approximation techniques. The proposed model outperforms the current state-of-the-art algorithms in terms of common pattern extraction. The validity of the proposed model is tested on the BCI competition dataset.
متن کاملBayesian Group Sparse Learning for Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is developed for parts-based representation of nonnegative data with the sparseness constraint. The degree of sparseness plays an important role for model regularization. This paper presents Bayesian group sparse learning for NMF and applies it for single-channel source separation. This method establishes the common bases and individual bases to characteri...
متن کاملQuantized nonnegative matrix factorization
Even though Nonnegative Matrix Factorization (NMF) in its original form performs rank reduction and signal compaction implicitly, it does not explicitly consider storage or transmission constraints. We propose a Frobenius-norm Quantized Nonnegative Matrix Factorization algorithm that is 1) almost as precise as traditional NMF for decomposition ranks of interest (with in 1-4dB), 2) admits to pra...
متن کاملQuadratic nonnegative matrix factorization
In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Most NMF methods assume that each factorizing matrix appears only once in the approximation, thus the approximation is linear in the factorizing matrices. We present a new class of approximative NMF methods, called Quadratic Nonnegative Matrix Factorization (QNMF), wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Methods of Statistics
سال: 2017
ISSN: 1066-5307,1934-8045
DOI: 10.3103/s1066530717010045